Exercise 85

For the following exercises, for each polynomial, a. find the degree; b. find the zeros, if any; c. find the y-intercept(s), if any; d. use the leading coefficient to determine the graph's end behavior; and e. determine algebraically whether the polynomial is even, odd, or neither.

$$
f(x)=\frac{1}{2} x^{2}-1
$$

Solution

Part (a)
The degree of the polynomial is 2 because the highest power of x is 2 .

Part (b)

Set $f(x)=0$.

$$
f(x)=\frac{1}{2} x^{2}-1=0
$$

Solve for x.

$$
\begin{aligned}
& \frac{1}{2} x^{2}=1 \\
& x^{2}=2 \\
& x= \pm \sqrt{2}
\end{aligned}
$$

Therefore, the zeros are

$$
x=\{-\sqrt{2}, \sqrt{2}\} .
$$

Part (c)
y-intercepts are the points where the function touches the y-axis, which occurs when $x=0$.

$$
f(0)=\frac{1}{2}(0)^{2}-1=-1
$$

Therefore, there's one y-intercept: $(0,-1)$.

Part (d)

$(1 / 2) x^{2}$ is the dominant term in the polynomial, so the graph is in the shape of a parabola. Since the coefficient is $+1 / 2$, it opens upward towards the positive y-axis. The graph of $f(x)$ versus x below illustrates this.

Part (e)

Plug in $-x$ for x in the function.

$$
\begin{aligned}
f(-x) & =\frac{1}{2}(-x)^{2}-1 \\
& =\frac{1}{2} x^{2}-1
\end{aligned}
$$

Since $f(-x)=f(x)$, the function $f(x)$ is even.
Since $f(-x) \neq-f(x)$, the function $f(x)$ is not odd.

